본문 바로가기

공부를 합니다/수학 (mathematics)

선형대수(HYU)_07 벡터의 선형독립과 기저벡터

2.3 Linear Independence, Basis, and Dimension


Linear Independence or Dependence


c1v1+c2v2++cnvn=0을 만족시키는 경우가 c1=c2==cn=0밖에 없을 때 (trivial combination), vectors v1,v2,,vnlinearly independent하다. vector vk를 다른 vectors들로 표현할 수 없다.

 

반대로 nonzero인 c가 존재하는 경우 v들은 linearly dependent하다.

 

ex 1) v1=zero vector이면 (백터집합중에 zero vector가 존재하면) 해당 벡터집합은 linearly dependent하다.

ex 2) Triangular matrix의 column들은 linearly independent하다

A=[342015002]

  • 행렬 A의 Gaussian Elimination의 결과로 생긴 nonzero row는 linearly independent하다.
  • nonzero pivots를 갖는 columns는 linearly independent 하다.

U=[133200310000]

  • Rm 안에 벡터n개로 이루어진 집합이 있을 때 n > m이면 linearly dependent하다.

Spanning a Subspace


벡터집합 v1,v2,,vn의 모든 linear combination이 vector space V를 이룰 때 벡터집합 v1,v2,,vnVspan한다고 한다.

 

ex 3) Vectors [100][010]은 x-y 평면 (in R3)으로 span한다.

ex 4) Vectors [100][110]은 x-y 평면 (in R3)으로 span한다.

 

  • 특정 vector space로 span 할 수 있는 vector의 조합은 다양하다.
  • 특정 vector space로 span하기 위한 특정 linearly independent vectors의 linear combination은 unique하다.
  • 즉, ex 3), ex 4) 모두 x-y 평면으로 span하지만 ex 1), ex 2) 각각이 x-y 평면으로 span하기 위한 linear combination은 unique하다.

Basis for a Vector Space


Basis는 vector space V로 span할 수 있는 최소 개수의 linearly independent vectors를 말한다.

 

Vector space Vbasis는 아래 두개의 성질을 동시에 만족시켜야 한다.

  1. Vectors가 linearly independent 해야한다.
  2. Vertors는 space V로 span해야 한다.
  • 위의 ex 3), ex 4)는 모두 x-y평면의 basis이다.
  • 특정 Vector space V의 basis는 unique하지 않다. (Infinitely many)

Dimension of a Vector Space


Vector space의 V의 basis vectors의 개수는 같으며 이를 Vdimension이라고 한다.

U=[133200310000]Twodimensional subspace of R3

 

  • basis에 비해 너무 크거나 너무 작은 벡터집합을 이용해서 basis를 만들 수 있다.
  • Vector space V 안의 임의의 linearly independent set에 다른 vectors를 더하면 basis로 확장시킬 수 있다.
  • Vector space V 안의 임의의 spanning set의 불필요한 vectors를 없애면 basis로 축소시킬 수 있다.